সংযোগ বিধির প্রতিজ্ঞা দুইটির যাচাইকরন

নবম-দশম শ্রেণি (মাধ্যমিক ২০২৫) - উচ্চতর গণিত - সেট ও ফাংশন | | NCTB BOOK
10
10

নিচের বামের চিত্রে গাঢ় অংশটুকু ABC এবং ABC উভয় সেটই নির্দেশ করে। সুতরাং এক্ষেত্রে ABC=ABC। নিচের ডানের চিত্রে গাঢ় অংশটুকু ABC এবং ABC উভয় সেটই নির্দেশ করে। সুতরাং এক্ষেত্রে ABC=ABC

 

উপরে ভেনচিত্রের সাহায্যে যাচাই করা হয়েছে। এবার সুনির্দিষ্ট উদাহরণ দিয়ে দেখা যাক।

মনে করি  এবং  ।

তাহলে, 

এবং ABC={a,b,c,d}  {b,c,d,f,g}={a,b,c,d,f,g}

আবার, AB={a,b,c,d}  {b,c,f}={a,b,c,d,f}

এবং (AB)C={a,b,c,d,f}  {c,d,g}={a,b,c,d,f,g}

সুতরাং এক্ষেত্রে ABC=A(BC)

আবার, BC={b,c,f}  {c,d,g}={c}

এবংA(BC)={a,b,c,d}  {c}={c} ।

আবার,AB={a,b,c,d}  {b,c,f}={b,c}

এবংABC={b,c}  {c,d,g}={c}

সুতরাং এক্ষেত্রে A(BC)=(AB)C

দ্রষ্টব্য: সেটের সংযোগ ও ছেদ প্রক্রিয়া দুইটির প্রতিটি অপরটির প্রেক্ষিতে বন্টন নিয়ম মেনে চলে।

প্রতিজ্ঞা ১ (ডি মরগ্যানের সূত্র): সার্বিক সেট U এর যেকোনো উপসেট A ও B এর জন্য

ক) AB'=A'B'                 খ) AB'=A'B'

প্রমাণ: ( কেবল প্রথমটির প্রমাণ নিচে দেখানো হয়েছে। পরেরটির প্রমাণ নিজে কর।)

ক) মনে করি,xAB'। তাহলে, xAB|

               xAএবং xB xA' এবং xB' xA'B'

AB'A'B'

আবার মনে করি,xA'B'। তাহলে, xA' এবং xB'

               xAএবংxBxABx(AB)'

A'B'=(AB)' 

সুতরাং (AB)'=A'B'
 

প্রতিজ্ঞা ২. সার্বিক সেট U এর যেকোনো উপসেট A ও B এর জন্য A\B=AB'

প্রমাণ: মনে করি, xA\B। তাহলে, xA এবং xB

                          xA এবং xB' xAB'

A\BAB'
 

আবার মনে করি, xAB'। তাহলে, xA এবং xB'

                          xAএবং xB xA\B

AB'A\B

সুতরাং, A\B=AB'
 

প্ৰতিজ্ঞা ৩. যেকোনো সেট A,B,C এর জন্য

                     ক) A×BC=A×B(A×C)

                      খ)A×(BC)=(A×B)(A×C)
 

প্রমাণ:(কেবল প্রথমটির প্রমাণ নিচে দেখানো হয়েছে। পরেরটির প্রমাণ নিজে কর।)

ক) সংজ্ঞানুসারে, A×(BC)

 

={x,y: xA, xB এবং yC}

={x,y: x,yA×B এবং x,yA×C}

 

A×(BC)A×BA×C

আবার, A×BA×C

={x,y:x,yA×B এবং x,yA×C}

={x,y: xA, yB এবং xA, yC}

 

 

A×BA×CA×BC

সুতরাং, A×BC=A×BA×C

Content added || updated By
Promotion